結合關鍵詞驗證及語者驗證之雲端身份驗證系統 (A Cloud Speaker Authentication System Based on Keyword Verification and Speaker Verification) [In Chinese]

نویسندگان

  • Yi-Chin Chiu
  • Chuan-Yen Fan
  • Bor-Shen Lin
چکیده

電腦和網際網路的誕生,讓人們的生活越來越便利。而隨著行動裝置的快速發展,人類 的生活方式更是產生了非常大的變革,不僅需要的資訊,信手拈來便可以獲得;許多企 業所提供的新興商品與服務交易,更是在彈指之間便可以順利完成。因此,如何在網際 網路上提供使用者方便、快速、彈性、可靠的身份驗證,並免除使用者記憶及輸入一大 堆用戶名稱及密碼的負擔,便成為一個重要的課題。本研究結合了關鍵詞驗證和語者驗 證技術,讓使用者不需要記憶及輸入冗長與煩雜的資訊,只要對著智慧型行動裝置說話, 身份辨識系統便可以在網際網路的環境中對使用者來進行身份驗證。我們以隱藏式馬可 夫模型和高斯混合模型分別實作了關鍵詞驗證模組與語者驗證模組,並以分散式架構實 作出雲端即時身份辨識系統。我們以 TCC-300 語料進行語者模型參數和訓練流程的調校 實驗,以改進語者驗證效能的訓練流程;並對背景語者篩選方法及性別相關模型進行實 驗,探討不同條件下的系統設計方法。實驗的結果顯示,在語者模型之混合數設定為 15、迭代次數設定為 10,背景語者的數目設定為 50 人的情況下, F 值可以達到 0.9875, 展現出不錯的效能。

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

以二維共振峰分布建立語者音色模型及其在語者驗證上之應用 (Using 2D Formant Distribution to Build Speaker Models and Its Application in Speaker Verification) [In Chinese]

語音是人類彼此間溝通最方便也最首要的方式。語音不但是用於傳播信息,也是一項重要的生物特徵 (biometrics),可以用來做身份識別之用。對於利用電腦來分析語音這方面的研究,大致可分為兩個領域: 一是語詞識別(speech recognition),一是語者識別(speaker recognition)[1-4]。若是要分辨某一個語音 樣本是否來自某一個特定的語者,則又稱為語者驗證(speaker verification 或 speaker authentication)。 語者驗證又可細分為限定語詞(text dependent)與非限定語詞(text independent)兩種方式[5,6]。在限 定語詞的方式中,用來比對的兩段語音樣本,其語音之內容須為相同或相似。而在非限定語詞的方式下, 其語句之內容可為不同。後者之處理難度較高,但在取樣上較不受限,其應用也較為廣泛。本研...

متن کامل

完全基於類神經網路之語音合成系統初步研究 (A Preliminary Study on Fully Neural Network-based Speech Synthesis System) [In Chinese]

A Preliminary Study on Fully Neural Network-based Speech Synthesis System 廖書漢 SHU-HAN Liao ,蔡亞伯 YaBo Chai , 廖元甫 a Yuan-Fu Liao, a 國立台北科技大學電子工程系 [email protected], [email protected], [email protected] 摘要 傳統的語音合成使用先文字分析後語音合成的架構,但是這種兩階段的作法, 通常會有,若前級分析錯誤,就會影響後級合成,且無法挽救的問題。因此,在 本論文中我們希望嘗試把前後級,全部都改成以類神經網路實現,以便將來可以 直接合成一個大的端對端語音合成類神經網路。主要的想法是,直接以字元串為 輸入單位,並盡量用大量未標記語料,進行非監督式類神經網路訓練。我們的系 統包含四個子網路,分...

متن کامل

結合聲學與韻律訊息之強健性語者辨認方法 (Combination of Acoustic and Prosodic Information for Robust Speaker Identification) [In Chinese]

語者辨認系統在公共電話網路中,通常會遇到未知不匹配話筒和辨認語料不足的問題。 為增進語者辨認系統對未知話筒之強健性,與有效利用有限語料,我們提出一融合下層聲學 與上層韻律訊息之架構,首先利用(1)最大相似先驗知識內插法(maximum likelihood-a priori knowledge interpolation,ML-AKI)方法估計與補償話筒聲學特性,並以(2)最小 錯誤鑑別式法則(Minimum Classification Error, MCE)訓練語者模型,以拉大不同語者間 聲學模型的距離,與利用(3)韻律訊息特徵分析(eigen-prosody analysis, EPA)為輔助,量 測不同語者間的韻律模型距離,最後利用(4)線性迴歸的方式融合聲學與韻律模型分數得到 最後的辨識結果。 實驗使用 Handset TIMIT(HTIMIT)語料庫,以 leave-on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013